Particle Swarm Optimization for Architectural Design

Silvereye 1.0

by Judyta Cichocka
Particle Swarm Optimization for Architectural Design

Silvereye 1.0

Judyta Cichocka

This book produced and published digitally for public use. No part of this book may be reproduced in any manner whatsoever without permission from the author, except in the context of reviews.

© Code of Space. All rights reserved.

ISBN: 978-83-943176-1-4

1st edition, August 2016, Vienna
Content

1. Introduction ...3
 1.1 Citing Silvereye...4
 1.2 Silvereye’s mission...4
2. Optimization of design problems ..5
 2.1 Background...5
 2.2 Method..6
 2.3 Visualization of the optimization process...7
3. Silvereye 1.0...9
 3.1 Installation..9
 3.2 Setting Up the Optimization process..10
 3.3 Optimization process..14
 3.4 Tuning Silvereye..17
4. Case Studies...19
 4.1 Travelling Salesman Problem (TSP)..19
 4.2 Adjusting the roof geometry...21
5. Acknowledgement..24
6. Bibliography...25
#1 Introduction

Silvereye is an optimization solver, fully embedded in the parametric environment of Grasshopper which is a plug-in for the 3d modeling tool Rhinoceros. Silvereye is a result of a joint research between Wroclaw University of Technology (WRUT) and Victoria University of Wellington (VUW).

Silvereye 1.0 has been developed by:
Judyta Cichocka (WRUT, Faculty of Architecture, Department of History of Architecture, Arts and Technology),
Agata Migalska (WRUT, Faculty of Electronics),
Will Browne (VUW, School of Engineering and Computer Science)
Edgar Rodriguez (VUW, School of Architecture and Design).

Our team was the first to introduce an optimization solver based on Swarm Intelligence for architecture and design (Cichocka et al. 2015).

We have developed, verified and tested the single objective optimization tool - Silvereye, which had its beta release on 28.06.2016 and is now available to Grasshopper users for testing and feedback.

Silvereye is an optimization plug-in like Galapagos or Octopus. However, unlike these programs that are based on Genetic Algorithms, Silvereye performs the optimization routine based the Swarm Intelligence. It is dedicated for single-objective searches in solving real-world design problems. It is easy to use for non-experts, has been tailored to the needs of architects, designers and engineers in the early design phase. Silvereye is a free version for non-commercial use only.

Figure 1. on the left: Silvereye bird – a native New Zealand specie. In late summer silvereyes gather into flocks and migrate to the north. source: australiangeographic.com.au on the right: Silvereye plug-in logotype.
1.1. Citing Silvereye

In case you use Silvereye for your scientific work please cite the following papers:

Cichocka J.M., Migalska A., Browne W.N., Rodriguez E., 2016, “SILVEREYE- the implementation of Particle Swarm Optimization (PSO) algorithm in a single objective optimization tool for Grasshopper” (n.p.)

1.2 Silvereye’s Mission

An optimization process is a great solution for designing energy efficient and sustainable architecture. Building sustainable lives in harmony with the ecosystems and local resources requires a bottom-up approach. Environmental and economic challenges have multiple features that can be optimized. New optimization tools can facilitate aiding and solving architectural design problems such as daylight availability, material use and construction waste, logistical efficiency, fabrication rationalization, cost-effectiveness and other design aspects. Robust optimization processes significantly reduce carbon-footprint, reduce the material use and increase the energy-efficiency.

Goal of sustainable design is to eliminate negative environmental impact completely through skilful, sensitive design. Silvereye is a measure to achieve this goal.

Figure 2. Roof structure optimized with Silvereye. The maximum nodal displacement for both initial and optimized design was calculated with FEM analysis under 1cm.
Optimization of design problems

By difficult optimization problem we understand a problem which (Michalewicz & Fogel 2004):
- has such a high number of possible solutions that checking all of them would take ages
- cannot be simplified, as simplification of the problem would lead to discovery of useless solutions
- might have several optimal solutions
- is constrained and discovering even one feasible solution might be difficult

Real-world design optimization problems are usually too difficult for the analytical methods to solve in finite time. When classic methods fail to find any exact solution, heuristics are employed - techniques that are not guaranteed to find an optimal solution but are at least capable of finding approximate solutions.

2.1 Background

In 1960’s a heuristic that mimics the process of natural selection, Genetic Algorithm (GA), was developed for solving difficult, real-world problems. A population reproduces by means of gene crossings and mutations in order to create better offspring and repeats that reproduction until termination criteria are met. In 1994 a concept of Swarm Intelligence (SI) emerged (Millonas 1994), inspired by the movement of organisms in a bird flock or fish school. A swarm is formed of the particles, whose movement are influenced by their own knowledge as well as by the knowledge of the whole swarm. It was soon discovered that Swarm Intelligence approach can be used to efficiently solve optimization problems and so Particle Swarm Optimization (PSO) algorithm for optimizing a single objective optimization problems was proposed (Kennedy & Eberhart 1995). Through extensive research it has been shown that for many classes of problems PSO converges to the optimal solution quicker than GA, i.e. PSO requires less iterations.

<table>
<thead>
<tr>
<th>Two main families of the Optimization Algorithms (Brownlee 2011)</th>
<th>Description</th>
<th>Algorithms</th>
<th>Optimization software for design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolutionary Computation (EC)</td>
<td>a heuristic that mimics the process of natural selection</td>
<td>Genetic Algorithm, Genetic Programming, Evolution Strategies, Differential Evolution, Evolutionary Programming, Grammatical Evolution, Gene Expression Programming, Learning Classifier System, NSGA and SPEA</td>
<td>Galapagos, Octopus, Optimo</td>
</tr>
<tr>
<td>Swarm Intelligence (SI)</td>
<td>inspired by the movement of organisms in a bird flock or fish school</td>
<td>Particle Swarm Optimization, Ant System, Ant Colony Optimization, Bees Algorithm and the Bacterial Foraging Optimization Algorithm</td>
<td>Silvereye</td>
</tr>
</tbody>
</table>

Table 1. Two main families of the optimization algorithms accordingly to Brownlee (2011).

At the moment designers, architects and engineers have no choice but to use solvers based on Genetic Algorithms, such as Galapagos – a single-objective solver for Grasshopper, Octopus - a multi-objective solver for the same platform, or Optimo - a multi-criteria solver for Dynamo (Table 1). Silvereye is an alternative that has already demonstrated to solve single-objective problems faster (approximately 20 times faster) than existing EC-based alternative tools (Cichocka et al. 2016). Apart from performance superiority, SI approach is believed to be more intuitive and easier to understand due to smaller number of internal tuning parameters and visual optimization process based on the movement of the swarm.
2.2 Method

Swarm Intelligence implementation.

Swarm Optimization technique was selected for implementation as it “seeks to make things simpler rather than more complex” (Kennedy & Eberhart 1995). The algorithm implemented in the Silvereye meets all five basic principles of Swarm Intelligence described by Millonas (Millonas 1994). The PSO algorithm is implemented in its native form with added internal weight factors, which were introduced to prevent velocities becoming too large (Shi & Eberhart 1998) and has following pseudo code:

For each particle
 Initialize particle
END

Do
 For each particle
 Calculate fitness value
 If the fitness value is better than the best fitness value (pBest) in history
 set current value as the new pBest
 End
 Choose the particle with the best fitness value of all the particles as the gBest
 For each particle
 Calculate particle velocity according equation
 (a)
 Update particle position according equation
 (b)
 End

Where:

v[] = v[] + w*c1 * rand() * (pbest[] - present[]) + w * c2 * rand() * (gbest[] - present[])
(a)
present[] = present[] + v[]
(b)

The above pseudo code was adopted from: http://www.swarmintelligence.org/, where pbest – the best solution that has been achieved by the particle so far and gbest - the best value obtained so far by any particle in the population. It adopts the following internal parameters:

w – an interia coefficient (w = 0.3)
c1, c2 – learning factors (c1 and c2 = 2)
rand() - uniformly distributed random variables within range [0, 1]
(Shi & Eberhart, 1998)
2.2 Visualization of the optimization process

The robustness of tools and general performance were tested in variety of complex Fitness Landscapes as analogies to partially irregular and noisy optimization problems, that are increasingly common in architectural practice.

Visualizations reveal difference in mapping processes of solvers which affect the quality of discovered solutions and time of search. The orthogonal way of searching indicates that the implemented in Goat algorithm: Global, evolutionary (CRS2) is rather deterministic than stochastic. The Silvereye is faster and more accurate on average in solving the tested problem and then existing alternatives.

Figure 3. Particle Swarm Optimization Algorithm is finding the best solution of the problem with complex fitness landscape.

Visualizations reveal difference in mapping processes of solvers which affect the quality of discovered solutions and time of search. The orthogonal way of searching indicates that the implemented in Goat algorithm: Global, evolutionary (CRS2) is rather deterministic than stochastic. The Silvereye is faster and more accurate on average in solving the tested problem and then existing alternatives.

Figure 4. The quality performance results for 10 runs for the difficult optimization problem (Fitness Landscape presented in the Figure 1).
Figure 5. Visualization of mapping processes in single objective optimization. Source: (Cichocka et al. 2015)
#3 Silvereye 1.0

3.1 Installation

You can download Silvereye from: http://www.food4rhino.com/project/silvereye?etx

Follow the instructions to install Silvereye plug-in:

1. Open Rhino and Grasshopper
2. To install Silvereye go to Components Folder (directly from Grasshopper => File/Special Folders/Components Folder or you can find it following the path: C:\Users*\AppData\Roaming\Grasshopper\Libraries
3. Copy and paste (drag and drop) Silverye.gha and SwarmOptimization.dll to the Components Folder
4. Right click on the both files and choose “Unblock”
5. Restart Rhino and Grasshopper
6. Silvereye component can be found in the Params / Utils category.
7. Place the Silvereye on the canvas and enjoy! Optimize everyday!
8. Please find a few optimization exercises attached in the folder “exercises”.
9. User documentation can be found in the docs folder.
3.2 Setting Up the Optimization process

Silvereye optimization solver is presented in Figure 1; in this example Silvereye searches for the values of two input parameters for which the fitness function attains minimum.

![Silvereye optimization solver](image)

Figure 6: Silvereye - a PSO-based optimization solver for Grasshopper.

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as:

- Velocity of convergence.
- Precision.
- Robustness.
- General performance.

In the presented example the Booth’s Function is used as the fitness function. This function is used as a test function in order to evaluate the performance of optimization algorithms.

![Booth’s function fitness landscape](image)

Figure 7. The Booth’s function fitness landscape, Source: https://en.wikipedia.org/wiki/File:Booth%27s_function.pdf
Parameters Selection

You can adjust parameters selection by dragging an arrow from the Silvereye component to a Number Slider/Gene Pool or using the Parameters’ context menu.

By dragging an arrow
You can add parameters by dragging an arrow from the Silvereye component to a Number Slider/ Gene Pool component.

1. Drag an arrow from the Parameters grip and attach it to a Number Slider/Gene Pool.

![Diagram showing parameters selection process](image1)

2. Keeping pressed „Shift”, repeat for all the input parameters.

![Diagram showing parameters selection process](image2)

You can also remove parameters by dragging an arrow with pressed “Ctrl” from the Silvereye component to a Number Slider/ Gene Pool component.

![Diagram showing parameters removal process](image3)
By context menu actions
To open a context menu, right click on the Parameters label on the Silvereye component.

1. You can add all the Number Sliders/Gene Pools in the GH document to the Silvereye’s Parameters. You can also remove all the sliders from the Parameters.

2. You can select several Number Sliders/ Gene Pools and add this selection to Silvereye’s Parameters.

3. In a similar manner you can remove selected Number Sliders/Gene Pools from Silvereye’s Parameters.

4. Individual Number Sliders/Gene Pools can be removed from the Silvereye’s parameters. Mouse over on the input’s name to highlight it.
Fitness Value Selection

Once you connected the parameters to the Silvereye component, you have to plug-in the fitness function that evaluates every discovered by the algorithm solution during optimization process. Connecting the firmness value is simple and similar to connecting the design parameters, just follow the below instructions.

1. Fitness function value has to be stored in the Number component (Params/Primitive/Number)

2. Connect the fitness value by dragging an arrow from the Fitness grip to your Number component.

The green arrow should indicate the right connection. Now the values of the firmness function is read by Silvereye directly from the Number component.
3.3 Optimization process

Once you connected the Parameters and Fitness, you can start optimization process. Double click on the Silvereye component to open the Silvereye Editor. You could adjust the Settings or leave them default and go straight to the Optimization tab.

![Silvereye Editor](image)

Objective - is the fitness goal. You can maximize or minimize your fitness function. As default Silvereye searches for the global minimum value of the plugged fitness function.

Iterations – set a number of iteration that solver should go through.

Max Velocity - is a “maximum jump” allowed between values on the Number Sliders and the Gene Pools selected for the optimization process in every iteration (for example, if Number Slider has domain <-10.00,10.00>, the Max Velocity 4 means that from the value 0.00 in the current iteration, Silvereye can explore values in the domain <-4.00,4.00> in the next iteration, as particle can maximally move 4 units in any direction). This rule applies to all connected Number Sliders and Gene Pools.

Runtime Limit – optimization process can be limited in time, check Runtime Limit checkbox and set the time. Leaving zero means no time limit.

Swarm Size – number of particles in the swarm (it is a number of calculated solutions per iteration)

Use Initial Position – Silvereye will start the optimization procedure from the values on the Number Sliders/Gene Pools, it means that current solution will be included in the first iteration

To save your setting for the next optimization run, click Save and Close. More about tuning Silvereye can be found in the paragraph 3.4 Tuning Silvereye.

To save your setting for the next optimization run, click Save and Close. More about tuning Silvereye can be found in the paragraph 3.4 Tuning Silvereye.
Silvereye Editor - Optimization

The PSO-based is a heuristic process, therefore try to run optimization several times to obtain different result.
Once all the settings are adjusted, you can start the Optimization process. Go to Optimization tab in the Silvereye Editor and press Start button.
If Parameters or Fitness is not connected to Silvereye component, you will get below alert after pressing Start button. Otherwise the optimization run starts.

Press Start button in the Optimization tab in order to start optimization process. The Editor will be blocked until the optimization process is finished.
Results
You will have the preview of the best result obtained in each iteration displayed on the Optimization tab. Last iteration (and the best result discovered) is shown at the top of the table.

You can reinstate any best result obtained in any iteration by selecting a row in a table and clicking on Reinstate button. Number Sliders/Gene Pools in the Grasshopper definition will be updated to the values corresponding to the selected iteration’s result.
3.4 Tuning Silvereye

Numerous studies exist on the adjusting internal tuning parameters. A comprehensive survey of such studies was done by Carlisle and Dozier (2001). The first version of Silvereye adopts the standard set of settings and the internal tuning parameters. The momentum coefficient for the whole swarm (w) and learning factors (c1, c2) are constant in the algorithm and not adjustable for the user. For the implemented values in the Silvereye setup check the paragraph: 2.2 Method. The Maximum velocity (Vmax) parameter and the Swarm Size are fully adjustable by user in the Grasshopper interface.

Maximum Velocity

Maximum Velocity (Vmax) sets an upper bound for the velocity component. The maximum velocity might be understood as the “maximum jump” allowed between values on the number sliders and the gene pools selected for the optimization process in every iteration. Therefore, the maximum value of the velocity (Vmax) is individual to each design problem, depending on the range of selected sliders/gene pools. It was observed that the most efficient maximum velocities should be between 5% and 50% of the range of the design parameters selected for the optimization (Cichocka et al. 2016).

Number of particles

The default swarm size is set to 20 particles. The recommended by Browlee (2011) swarm size is between 20 and 40 particles. The higher number of particles means denser sampling of the fitness landscape, therefore decrease the chances to miss good solutions or get stuck in the local optima. If discovering the closest result to the global optima (or global optima itself) is our priority, increasing the swarm size is recommended. However, it has to be mentioned that computational expensiveness depends on the size of the population. The larger the swarm, the longer the calculation per iteration.

Runtime Limit

The research on the Meiso no Mori Crematorium roof shape optimization (Cichocka et al. 2016) suggests that first 15 minutes is crucial in the longer optimization runs. This fact is correct both for Silvereye and tested alternatives: Octopus and Galapagos. This time may vary from problem to problem and depends on the singular calculation time for one solution.

For example, if calculation of the solution is time-consuming like 1 minute per single solution. In the first iteration 20 particles calculate their fitness values for their current parameters set-up. To go through 5 iterations to get some optimized result, 100 solutions have to be calculated. It means that for somehow reasonable result we should wait about 100 minutes.
Including your solution into optimization

In the Silvereye Editor you can check “Use Initial Positions”. Silvereye will start the search from the current values on the Number Sliders/Gene Pools. It does not mean that it will search just locally. It means that our solution will be included in the first iteration, and if Silvereye does not discover other better solution, it will tend to find one close to one suggested by the user.

Local Search

If would like to proceed with more local search (we found manually a shape/geometry/architectural solution that we like, however maybe it can be improved just slightly), we can follow the below procedure.

1. narrow down the Number Sliders/Gene Pools domains (Right click on the Number Slider/Edit and adjust the Min and Max values in the Numeric domain).
2. After that check ‘Use initial positions’ checkbox
3. Change the Max Velocity to a very small number.
4.1 Travelling Salesman Problem (TSP)

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This is a question for the Travelling Salesman Problem (TSP). TSP was defined in the 1800s by two mathematicians: W.R Hamilton and Thomas Kirkman. However, it appears that the general form of the TSP problem has been studied for the first time by Karl Menger in 1930s.

The Travelling Salesman Problem describes a problem which has every travelling salesmen. The Salesmen must travel between N cities, visit all of them, come back to the origin city using the shortest possible route. In the problem it is assumed that all the cities are connected with each other.

TSP found numerous applications in logistic real world problems like the order-picking problem in warehouses, vehicle routing, but also in the interview scheduling problem, mass plotting in PCB production or X-Ray crystallography.

In this exercise Travel Salesmen Problem is modelled as an undirected weighted graph. Cities are the graph’s vertices, paths are edges and path’s distances are the edges’ lengths (Figure 8).

Figure 9. Left: complete graph, verteces - cities, edges - all connections between cities, Right - found solutions - the shortest route through all cities.
In the first part of the exercise all cities are defined as points. By choosing them using List Item and changing the tree path we can manage the order in which they are connected. The Length component measures the total distance of the path. The goal is to find the shortest path connecting all the cities.
4.2 Adjusting the roof geometry

This exercise presents a workflow for form finding of the roof shape using an optimization process.

Optimization process:

Goal: normal vectors of roof panels should form the smallest possible angle with the sun vector.

Parameters: the amplitudes and periods of two independent sinusoids.

Constraints: the roof is fixed from one side, amplitude and period are constrained by the sliders’ range.

According to (Pugnale et al. 2014) optimization process can be just a form improvement or an exhaustive form finding process – it depends how the optimization problem is formulated.

If the design parameters have narrow domains the final result of the optimization will be relatively close to the initial configuration, and the process itself will be similar to the just shape/form improvement. This process when designer has already predefined shape.

In case when the parameters’ domains are wide, the whole optimization process turns to design exploration. The optimization algorithm can discover forms that have no relation to the initial design, provide unexpected results and sub-optimal solutions. This process might be called morphogenesis.

Figure 10. Two shapes generated by the definition using different input parameters. Left: Period 1, period 2 = 0.00, amplitude 1, amplitude 2 = 1.00; Right: Period 1, period 2 = 1.00, amplitude 1, amplitude 2 = 3.00.
1. Definition of two independent sinusoids

2. Creation of the NURBS surface.

3. NURBS to MESH geometry with Mesh Surface Component.

OPTIMIZATION

5. The discovered solution.
In the first part of the exercise the two independent sinusoids are defined. By using Loft, the roof surface is created. There are 4 design parameters that define the shape: amplitude and period of the first and second sinusoid. Period 1 and period 2 have domains $<0.00, 1.00>$ and amplitude 1 and amplitude 2 can be changed in the domain $<1.00, 3.00>$. These domains allow to create any subshape between presented forms in the Figure 10.

In the second part of the exercise the NURBS surface is converted to the MESH geometry using Mesh Surface component. The UV subdivision can be adjusted on the Mesh Surface component. Definition measures the angle between reversed predefined sun vector and every normal vector of the individual mesh quad. The smaller the angle between reversed sun vector and normal vector of the quad the better the exposition of the quad to the sun.

We would like to minimize the sum number of individual angles in order to find the most exposed to the
5 Acknowledgement

This work would not have been possible without Agata Migalska, who properly implemented the Particle Swarm Optimization Algorithm in the Grasshopper3d framework using C# language for custom component scripting. Agata has also proposed the Travelling Salesman Problem as an exercise for this booklet and assisted in the editing and proofreading in some parts of the book.

I am especially indebted to Dr. Will Browne, who has encouraged us to implement Particle Swarm Optimization in particular and who worked actively to provide us with the protected academic time to pursue Silvereye release.

I would like to express my gratitude to the people who saw me through this book; to all those who provided support, talked things over, read, wrote, offered comments, allowed me to quote their remarks and assisted in the editing and proofreading.

The presented in the book research was financially supported by European Union within the “THELXINOE: Erasmus Euro-Oceanian Smart City Network” grant.
Bibliography

Cichocka J.M., Migalska A., Browne W.N., Rodriguez E., 2016, “SILVEREYE- the implementation of Particle Swarm Optimization (PSO) algorithm in a single objective optimization tool for Grasshopper” (n.p.)

